T.C.S.O.F Examen n°:3 Physique-chimie

2015/2016 prof : Chouaib Elaouni

Chimie: (6Pt)

Magnésium

Je suis un isotope de l'atome de Magnésium Mg ayant : une masse $m=4,175 .10^{-26}kg$ et mon noyau porte une charge $q=1,92.10^{-18}c$ la masse d'un nucléon $m_p\approx m_n=1,67.10^{-27}kg$ et la charge élémentaire $e=1,6.10^{-19}C$

- 1- Quel est mon numéro atomique. -1pt-
- 2- Déterminer le nombre de mes nucléons du noyau. -1pt-

Une tablette de chocolat contient **220 mg** de magnésium.

- 3- Calculer le nombre d'atomes contenus dans cette tablette. -1pt
- 4 Donner ma structure électronique.
- 5- Ouelle est ma couche externe : Combien d'électrons contient-elle. -0.5pt-
- 6- L'élément magnésium possède deux autres isotopes, l'un possède **12** neutrons et l'autre possède **26** nucléons et qui sont respectivement dans les proportions **10** % et **11** %.

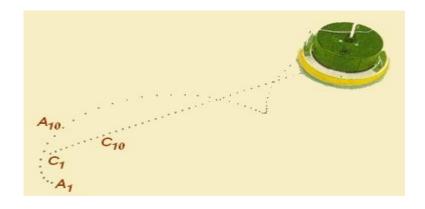
-1pt-

- **A-** Définir les isotopes d'un élément chimique. **-0**,**5pt-**
- B-Donner la composition, en neutrons, en protons et en électrons de chaque isotope. -1pt-

Physique 1:(14Pt)

Mouvement (3,5Pt)

Deux mobiles **M** et **N** en en mouvement en ligne droite par rapport à la terre On donne l'équation horaire de chaque mobile


$X_M = 2t-2$ et $X_N = -3t+4$ tel que X en mètre et t en seconde

- 1-quelle est la nature du mouvement de chaque mobile ,justifiez -0,5Pt-
- 2-déterminer V_M et V_N la vitesse des mobiles M et N -1Pt-
- 3-déterminer l'instant de rencontre de deux mobiles -1Pt-
- 4-A quel instant la distance entre les deux mobiles est **2m** -**1Pt**-

Appliquer le principe d'inertie(3,5Pt)

Le document ci-dessous est une photographie d'un mobile autoporteur évoluant sans frottement sur une table horizontale.

Deux points de la semelle du mobile inscrivent leurs positions respectives à intervalles de temps consécutifs égaux.

- 1-Caractériser le mouvement de chacun de ces points -0,5pt-
- 2- L'un des points a un mouvement identique à celui du centre d'inertie du mobile.

Lequel ? Pourquoi -1pt-

Le centre d'inertie du palet de masse \mathbf{m} =170 \mathbf{g} , lancé par le hockeyeur sur une surface de glace horizontale, évolue durant quelques instants en ligne droite et à vitesse constante

-1pt-

- 3- donner le bilan des forces exercées sur le palet.
- 4- déterminer les caractéristiques de ces forces -1pt-

Donnée: g =10N/Kg

Centre d'inertie(2,5Pt)

On considère un système constitué de trois corps S_1 et S_2 et S_3

 S_1 : une barre homogène AB de longueur L de masse m_1

 S_2 : un point matériel de masse m_2 fixé à l'extrémité A de la barre

 S_3 : un corps sphérique de rayon R et de masse m_3 fixé à l'extrémité B de la barre

1-donner l'expression de la relation barycentrique -0,5pt-

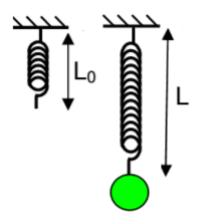
2-déterminer par rapport à G_1 centre d'inertie de la barre, la position du centre d'inertie

G du système en fonction de m_1, m_2, m_3, L et **R** -1pt-

3-déterminer l'expression de **G**₁**G** en fonction de **R** -1pt-

On donne: $m_{1}=2m_{2}=3m_{3}$ et L=10R

Physique 2


Tension d'un ressort (4,5Pt)

On suspend un solide $\bf S$ homogène sphérique de masse $\bf m$ =400 $\bf g$ à un ressort $\bf R$ à spires non jointives et de masse négligeable, sa constante de raideur est $\bf K$ =100 $\bf N$ / $\bf m$

Donnée: g=10N/Kg

- 1- En utilisant les conditions d'équilibres du corps S, calculer l'intensité de la force
 T appliquée par le ressort
 -1pt-
- 2- En déduire l'allongement du ressort Δl -0,5pt-
- 3- Sachant que l'allongement maximal du ressort est Δl_{max} =10cm calculer la masse maximale m_{max} qu'on peut suspendre sans qu'il perd son élasticité -1pt-
- 4- On suspend respectivement des masses marquées à un ressort R' à spires non jointives et de masse négligeable, sa constante de raideur est K'

On obtient les résultats suivants

T' (N)	0	0 ,4	8, 0	1,2	1,6
L(10 ⁻² m)	10	12	14	16	18

T': la tension du ressort R'

L: la longueur finale du ressort

- a- Représenter graphiquement les variations de la valeur de la tension **T'** que le ressort exerce sur la masse marquée en fonction de sa longueur finale **L** . -1pt-
- b- Déterminer K' la raideur du ressort R' -1pt-