

Evaluation N°3 Deuxième semestre Mathématiques

Niveau: 1 bac sx International

Durée: 2h

Date: 12/05/2018

Exercice 1: (5,5 pts)

1

1

1

1

1,5

0,5

1,5

1,5

1,5

1,5

1,5

0,5

1,5

1

1,5

2

On considère dans l'espace deux points A(0;1;2) , B(2;-1;1) et trois vecteurs $\vec{u}(1;0;-2)$, $\vec{v}(1;-1;-3)$, $\vec{w}(1;-1;2)$.

- 1) Donner une représentation paramétrique de la droite (D) qui passe par B(2;-1;1) et de vecteur Directeur $\overrightarrow{w}(1;-1;2)$.
- 2) a- Montrer que les deux vecteurs \vec{u} et \vec{v} ne sont pas colinéaires.
- **b-** Montrer que 2x-y+z-1=0, est Une équation cartésienne du plan (P) qui passe par le point A, et de vecteurs directeurs \overrightarrow{u} et \overrightarrow{v} .
 - 3) a- Montrer que les trois vecteurs \vec{u} , \vec{v} et \vec{w} ne sont pas coplanaires .
 - **b-** On déduire que la droite (D) perce le plan (P) , et déterminer les coordonnées de leur point d'intersections .

Exercice 2:(14,5pts) On considère la fonction numérique f définie par : $f(x) = \frac{x^3 - 2x^2 - x + 1}{x^2}$ et C_f sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- **1)** Déterminer D_f
- 2) calculer $\lim_{x\to 0} f(x)$, et donner une interprétation géométrique du résultat obtenu .
- 3) a- Calculer $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to +\infty} f(x)$.
 - b- Montrer que la droite (D): y=x-2 est une asymptote oblique à (C_f) au voisinage de + ∞ et de ∞
- c- Étudier la position relative de (C_f) , par rapport à la droite (D) .
- 4) a- Montrer que : $(\forall x \in D_f)$ $f'(x) = \frac{(x-1)(x^2+x+2)}{x^3}$
 - **b** Montrer que le signe de f'(x) est celui de x(x-1).
- 5) a- Montrer que : $(\forall x \in D_f)$ $f''(x) = \frac{6-2x}{x^4}$ (utility expression de f).

 b-Étudier la conscrité de G
- **b-** Étudier la concavité de C_f , et Montrer que C_f admet un point d'inflexion dont il faut déterminer les coordonnées .
- 6) On admet que f(-1) = -1, $f(-\frac{1}{2}) = \frac{7}{2}$ et $f(\frac{1}{2}) = \frac{1}{2}$, construire (C_f) .