
PROF: SRIBA Hicham Matière: Physique chimie

I. Evolution du modèle de l'atome

II. Structure de l'atome

La matière est formée de petites particules nommées atomes, elle est formée d'un noyau autour duquel tournent les électrons.

1-Le noyau.

Il est constitué de particules élémentaires appelées: nucléons, qui sont de deux sortes : les protons et les neutrons.

- Le proton : est une particule de charge: $q_p = e = +1,6.10^{-19} C$, et de masse : $m = 1,673.10^{-27} \text{ kg}$.
- > Le neutron, particule neutre électriquement, a une masse voisine de celle du proton : $m_n = 1.675.10^{-27} \text{ kg} = m_n$.

On appelle le nombre de nucléons contenus dans un noyau : nombre de masse de symbole A.

Le nombre de protons du noyau s'appelle nombre de charge ou numéro atomique et se note Z.

> On représente le noyau d'un atome ou l'atome même par le symbole suivant :

 $_{7}^{A}X$ **A** : nombre de masse **Z** : numéro atomique

2-Les électrons.

Un électron est beaucoup plus léger qu'un nucléon. Sa masse est m_e = 9,1. 10^{-31} Kg. Sa charge électrique est l'opposé de celle du proton : q_e = -e = -1,6. 10^{-19} C. Un atome étant électriquement neutre, il possède autant de protons que d'électrons.

- > Charge de protons : +Ze.
- > Charge d'électrons : -Ze.
- \triangleright Charge de l'atome : +Ze Ze =OC. où e = 1,6. 10^{-19} C appelée la charge élémentaire.

3- La masse d'un atome.

La masse de l'atome est la somme de la masse de ses différents constituants :

$$M_{atome} = m_{noyau} + m_{électrons} = (Z.m_p + N.m_n) + Z.m_e$$

Si on néglige la masse des électrons devant celle des protons alors la masse approchée de l'atome est égale à :

$$m_{atome}$$
 = Z. m_p + N. $m_n \approx A.m_{nucl\'eons}$

On dit que La masse de l'atome est concentrée dans son noyau.

4- Dimensions d'un atome

Le noyau d'un atome a un rayon de l'ordre de 10^{-15} m. L'atome peut être considéré comme une sphère de rayon 10^{-10} m. Le rayon du noyau est environ 100 000 fois plus petit que celui de l'atome.

Tout comme le système solaire, l'atome a une structure lacunaire.

III. Elément chimique

1 - Définition.

On donne le nom d'élément chimique à l'ensemble des entités chimiques définies par le même numéro atomique Z.

Exemple: Z = 6 -----> élément de carbone.
Z = 8 -----> élément d'oxygène.

2-Les isotopes.

Les isotopes sont des atomes dont les noyaux possèdent le même numéro atomique Z et diffèrent par leur nombre de masse A.

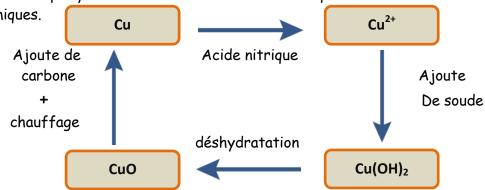
 \sim Exemple : les isotopes de l'élément de carbone. $^{12}_{6}C$; $^{13}_{6}C$; $^{14}_{6}C$.

3-les ions monoatomiques.

Un ion monoatomique résulte d'un atome qui a gagné ou perdu un ou plusieurs électrons.

Exemple: l'ion cuivre II: Cu²⁺ (Anion); l'ion chlorure: Cl⁻ (Cation).

4- Conservation de l'élément chimique.


Transformation 1: l'action de l'acide nitrique sur le métal cuivre ----->Ion de cuivre II(Cu²⁺).

Transformation 2: réaction entre les ions de cuivre II et la soude ---> hydroxyde de cuivre II ($Cu(OH)_2$).

Transformation 3 : déshydratation par chauffage d'hydroxyde de cuivre II ----> monoxyde de Cuivre (CuO).

Transformation 4: réaction de carbone avec monoxyde de cuivre ----> métal cuivre (Cu).

Conclusion: Dans toutes les transformations, on observe une évolution du cuivre en différentes formes, On dit qu'il y a conservation de l'élément chimique lors de transformations chimiques.

5- répartition électronique.

5.1. les couches électroniques.

- Les électrons d'un atome se répartissent dans des couches électroniques K, L et M, pour les atomes dont le numéro atomique est inférieur ou égal à 18.
- La dernière couche occupée s'appelle la couche externe. Les électrons qui l'occupent sont appelés les électrons périphériques de l'atome.

5.2. règle de remplissage.

- Une couche électronique ne peut contenir qu'un nombre limité d'électrons : 2 électrons sur la couche K ; 8 électrons sur la couche L ; 18 électrons sur la couche M ; Une couche contenant un nombre maximal d'électrons est dite saturée.
- Les électrons commencent par occuper la couche K puis la L et enfin la M. Ils ne peuvent se placer sur une nouvelle couche si la précédente n'est pas pleine.

5.3. la structure électronique.

La structure électronique est composée des lettres correspondant aux couches K,L,M. Les lettres sont écrites entre parenthèse et on indique le nombre d'électrons qu'elles contiennent en exposant.

 \checkmark Exemple : Structure électronique de l'atome de carbone : $Z = 6 : (K)^2 (L)^4$